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Introduction 

There is great interest in assessing the usefulness of polarization-based imaging for improved 
targeting and tracking of “man-made” objects that are obscured by complex  “natural” 
backgrounds (1).  Polarimetric based imaging shows particular promise when applied in the 
thermal infrared (IR) (2).  

Thermal IR polarimetric imaging exploits the fact that man-made objects, such as vehicles, 
roads, buildings, etc., tend to emit radiation that exhibits a greater degree of polarization than 
natural background materials i.e., soil, vegetation, brush, etc.  By filtering the image forming 
radiation based solely on polarization state, one can construct a polarimetric image that 
highlights objects that are most polarized and suppress regions of the scene that are least 
polarized.  The net result is that thermal polarimetric imagery tends to increase the contrast 
between the man-made targets and complex backgrounds within a scene.  In a study by Gurton et 
al., it has been shown that information content is greatly enhanced by fusing polarimetric 
imagery with conventional thermal imagery (1).  An example of this can be seen in figures (1a 
through 1d.).  
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a. b. 
 

 
c.                                                                d. 
 

Figure 1. Image a. and b. show a conventional visible and LWIR thermal image, respectively, of a vehicle 
parked in a tree-line and obscured from view.  Image c. shows a resultant polarimetric image 
(commonly termed an S1 image), that is a measure of vertically polarized radiation compared to 
horizontally polarized radiation.  Black regions within the binary image c. signify regions where 
the difference between the vertical and horizontal sates is zero.  The colored region(s) signify some 
finite difference implying a man-made object is present.  Image d. shows image b. and c. being fused 
together highlighting the presence of a hidden vehicle.  

However, because polarimetric imaging produces a multivariate set of at least four spatially 
coincident images per frame, i.e., thermal intensity, amount of horizontally and vertically 
polarized light, amount of +45°and –45° polarized light, and the amount of left- and right-
circular polarized light, there are many ways of processing the data to identify objects of interest.  
As a result, polarimetry (as well as multi- or hyper-spectral imaging) generates a significant 
sized data cube that must be processed in real-time (or pseudo-realtime) rates.  Therefore, it is 
desirable to work with a reduced data set to increase computational efficiencies.  Several image 
processing techniques have been suggested that would produce a reduced data set for analysis 
and provide varying degrees of image enhancement. 
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Sadjadi, et al., presented a suite of algorithms designed for automatic target recognition (ATR) 
and detection within IR polarimetric imagery (3,4).  The algorithms were tested using simulated 
IR polarimetric imagery and required an estimate of the size of the object of interest in terms of 
its pixel area within the scene, as well as an a priori generated library of first and second order 
statistics for the particular object being examined. Zallat, et al., proposed methods based on 
cluster analysis that involves polarization enhancement and an image processing algorithm based 
on a Markovian model (5).    

We propose applying a well-known multivariate image processing technique called principal 
component analysis (PCA) that reduces the overall data set, and then apply a cluster analysis 
(CA) methodology to increase processing efficiency further (6).  We applied these techniques to 
various polarimetric image cubes of recorded long-wave infrared (LWIR) polarimetric imagery 
of DoD relevant targets recorded during various field tests during the summer of 2006. 

First, we describe the polarimetric data acquisition methodology and the LWIR polarimetric 
imager used to record the polarimetric images used here.  We then describe in detail the 
particular features unique to the PCA and CA methods used in this study and present examples 
of processed imagery.  Finally, we end with a discussion highlighting the various strengths and 
weaknesses associated with either PCA or CA and suggest conditions for optimum utility. 

LWIR Polarimetric Imagery 

The polarimetric camera system used is a modified LWIR thermal imager designed to produce 
well calibrated Stokes imagery by deriving the Stokes parameters over the wavelength region 8.5 
to 10.5 μm.  The Stokes parameters are then used to calculate the degree of linear polarization 
(DOLP) and an orientation angle (ORT).  The definitions of the Stokes images as well as the 
DOLP and ORT images are defined by equations 1 through 6,  

 2
3

2
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2
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 ( ) ( ),45452 −−+= IIS  (3) 
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where I(0), I(90), and I(±45) represent the measured radiance values obtained when a polarizer 
placed in front of a detector is rotated through 0°, 90°, and  ±45° with respect to the observation 
plane and I(R) and I(L) represent the right- and left-handed circular states.  Here we define the 
observation plane as the plane that contains the surface normal at a point on an object and the 
line-of-sight vector from the camera to that point on the object.  Notice that S0 is simply the 
incident irradiance and that the equality holds for completely polarized light.  S1, S2, and S3 
specify the state of polarization.  From equation 2, we see that if S1 > 0, there is an abundance of 
horizontal polarization, and if S1 < 0 there is an abundance of vertical polarization. If S1 = 0 there 
is no preferential polarization with respect to the horizontal or the vertical.  Similarly, in equation 
3 if S2 > 0 there is an abundance of +45° polarization and if S2 < 0, there is an abundance of  
–45° polarization.  The LWIR polarimetric imager consists of two primary components: 1) a 
polarimetric module that houses a spinning achromatic cadmium selenide (CdSe) quarter wave 
plate which is mounted in series with a fixed wire-grid polarizer, and 2) a camera module that 
consists of a liquid nitrogen cooled, 240x360 pixel, mercury cadmium telluride (MCT) focal-
plane-array (FPA) (see figure 2).  

Sequential LWIR polarimetric images are recorded digitally at a rate as fast as 240 frames/sec 
and synchronized to the rotation of the spinning CdSe wave-plate.  The spinning wave-plate and 
fixed wire-grid polarizer combination effectively acts like a variable polarimetric filter.  As a 
result, each digital image recorded is generated by polarized emittance of a particular orientation.  
Although the maximum acquisition rate is 240 frames/second, the present data were acquired at 
128 frames/second and the 240x360 pixels FPA was windowed down to 152x158 pixels.  With 
the speed of the spinning wave plate set at 8 revolutions/second, 16 frames were measured every 
125 ms and averaged over 10 revolutions.  The averaged frames were then used with a 
prerecorded calibration file to derive the four Stokes images.  The imager was calibrated by 
recording the radiometric response when we observe known linear polarization states produced 
by the transmission of the radiance from an extended blackbody through a wire-grid polarizer, 
allowing us to measure the intensity parameters in equations 2 and 3.  Because in practice we 
have seen no evidence of circularly polarized emission in the natural environment, the 
corresponding Stokes image S3 (equation 4) is always taken to be zero in this analysis.  
Therefore, we did not measure I(L) or I(R) in the calibration procedure.  
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Figure 2. The LWIR polarimetric imager is designed to produce well calibrated 

polarimetric and/or Stokes imagery.   

Image Processing Method 

For static or slowly moving objects the LWIR polarimetric imager generally produces a 
minimum of 4 multivariate Stokes images as described above.  This results in a stack of images 
in which the pixel positions match for all of the images in the stack (6).  For the analysis 
conducted here, we considered only the most robust Stokes image(s) and polarimetric products, 
i.e., the three values DOLP, ORT, and S0. We then apply PCA and CA to a given stack of three 
images, which serve to characterize the scene. 

The first step is to construct a data matrix, , from a given image stack such that the n row(s) 

represent the pixels of a particular image in the stack, and the p column(s) are taken to be a 
particular variable associated with one of the multivariate images, e.g., p represents one of the 3 
parameters defining our image stack, DOLP, ORT, or S0.  This creates a p-dimensional variable 
space in which each pixel is represented by a p-element vector which allows the similarities of 
the pixels to be assessed geometrically (5).  If the image stack used is 30x30 = 900 pixels, then 
n = 900. Since our image space is limited to the 3 states DOLP, ORT, and S0, p=3. Therefore the 
dimensions for the data matrix, , produced from a typical image  stack is 900 x 3.   

npX

npX

Principle Component Analysis (PCA) 

PCA was used to obtain a reduced/alternative representation of the image stack which effectively 
performs a linear transformation that projects the data set to a new orthogonal multi-dimension 
coordinate system, thus creating a new set of derived variables.  This projection is such that the 
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greatest variance of the data lies on the first coordinate, the second greatest variance on the 
second coordinate, and so on.  By displaying the image of each derived variable, we obtain a 
representation of the original image in terms of the interrelationships between the variables in the 
data set (7).   

We begin by calculating the covariance matrix, , of the standardized data matrix, .  The 
data, , was standardized to avoid dominance of one variable over another by dividing each 

element by its corresponding column-wise variance, σp. 

npC npS

npX

 pnpnp XS σ=  (7) 

The eigenvectors and eigenvalues of  were calculated and placed in descending order 

according to the eigenvalues to obtain Vpp and λp, respectively.  The projection into variable 
space, Pnp, is obtained by the matrix multiplication in equation 8. 

npC

 ppnpnp VCP ⋅=  (8) 

The matrix Pnp consists of derived variables that are the projection of the original data set onto 
the basis found in the PCA.  The image plot of Pnp reflects the correlation of each pixel with the 
principal components.  Examination of the elements of Vpp reveals detailed information of the 
contribution of each variable to the principal components.   

Other meaningful parameters include the “percent energy” which is obtained by calculating the 
cumulative sum of the elements of λp.  The percent energy represents the amount of the variance 
of the entire data set that is accounted for based upon the number of principal components one 
chooses to include in the analysis.  This also allows for the reduction of the dimensions of the 
data by disregarding the principal components that only account for a negligible amount of the 
total variance.  

Cluster Analysis (CA) 

CA was used to exploit the tendency for distinct objects and/or regions of objects to have similar 
values for all p variables in the variable space (7).  A geometrical distance in the p-dimensional 
variable space can be used to determine the similarity between pixels.  A Euclidean distance 
metric, given by equation 9 was used in this analysis.  An n × n matrix was calculated (where n is 
the number of pixels) whose elements are the distances between each pixel in the p-dimensional 
variable space.  

 ( ) ( ) ( )22
22

2
11 jpipjijiij xxxxxxd −++−+−= ,        i,j≤  n (9) 
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The cluster algorithm used in this analysis was agglomerative and hierarchical, i.e., each pixel 
begins as an individual cluster, and as the algorithm progresses, the two clusters that are closest 
are fused until the only remaining cluster contains all of the pixels of the image.  In addition, 
once a pixel is placed in a cluster, it remains in it through the termination of the algorithm.  Each 
time a cluster acquires a new member (pixel), its distance in the p-dimensional variable space 
with respect to the remaining clusters must be recalculated.  In this study, the distance between 
two clusters containing more than one pixel is defined as the average distance between all of the 
members of each cluster, known as average-linkage.  To limit computation times, we performed 
the analysis on subsections of the original LWIR imagery that we feel contain objects of interest. 

Results 

The results presented here will consist of two scenes that each contains an object of interest.  The 
geometry of the objects of interest in the scenes differs greatly from each other, allowing for an 
assessment of the robustness of the algorithm’s ability to distinguish the objects from the 
background as well as distinguish various features of the object.   

For each scene a visible and DOLP image are presented for comparison followed by the PCA 
and CA results.  The PCA results consist of the cumulative percent energy, eigenvectors, and 
principal component plots.  The CA results consist of cluster plots that exemplify the evolution 
of the clustering processes.  The data was grouped into a range of 2 to 20 clusters.  The images 
that best exemplify the progression of the cluster output were selected for presentation below. 

Scene 1 

The first scene is shown in figure 3 for reference and consists of a vehicle that is in the brush.  A 
corresponding LWIR DOLP image is shown in figure 4 (the highly pixilated nature of the 
polarimetric image is due to the fact that it is a subsection of the original image, i.e. the original 
image is 152x158 pixels, and figure 4 is only a 30x30 pixel subsection of the original).   
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Figure 3. Visible image of scene 1, which is a 

vehicle in the brush. 

 

Figure 4. LWIR DOLP 30x30 pixel image of the vehicle 
in scene 1. 

The percent variance and cumulative percent variance for the three principal components are 
shown in table 1.  The first component accounts for the largest amount of the variance, 
approximately 48%.  The next component accounts for 38% and the last for 14%. The 
components of the eigenvectors listed in table 2 indicate each variable’s contribution to the 
principal components.   

Table 1.  Percent variance and cumulative percent variance for the principal components.  

Principal Component Percent Variance Cum. Percent Variance 
1 48 48 
2 38 86 
3 14 100 
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Table 2. Components of the eigenvectors Vi (i=1,2,3) which serve 
as basis vectors for the projection of the data in the multivariate 
space of scene 1.  

 V1 V2 V3 
DOLP 0.67202 –0.40393 0.62067 
ORT 0.72953 0.21718 –0.64855 
S0 0.12717 0.88864 0.44063 

 
The variables that contribute most to the first principal component are DOLP and ORT.  Recall 
that, from table 1, the first principal component accounts for nearly half of the variance within 
the data set.  This suggests that thermal intensity, S0, does not contain the important information 
within the scene, i.e., there is low thermal contrast.  In addition, note that each variable is directly 
correlated to each other in the first component.  On the other hand, the second principal 
component is dominated by S0 and DOLP is now inversely correlated with ORT and S0.  The 
contribution to the third principal component is distributed more evenly among the variables in 
the data set than for the first two principal components and ORT is inversely correlated to DOLP 
and S0.   

Figures 5a-c show the principle component images listed in descending order. These images 
contain the information about the correlations of each variable with respect to each principal 
component.  One can see in figure 5a the lighter colored pixels are directly correlated to the first 
principal component which, as we saw in table 2, is dominated by both DOLP and ORT whose 
eigenvector component magnitudes are 0.67202 and 0.72953, respectively.  The darker pixels are 
inversely correlated to the first principal component.  Also, note that there is good contrast 
between the vehicle and the background.  Because the contribution by S0 to the first derived 
variable is so low, this also suggests that there is low thermal contrast within this scene.  
However, figure 5b shows that the same region of pixels is directly correlated to the second 
principal component which is dominated by the total radiance image, S0 (see table 2).  Note that 
this corresponds to a decrease in the amount of contrast between the vehicle and the background 
in figure 5b.  The interpretation of figure 5c is more difficult because, as can be seen in table 2, 
the magnitudes of the components of the eigenvectors are much closer and less distinct, and as a 
result the third principal component accounts for the smallest percent of the total variance seen in 
the image. 
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Figure 5a. First derived image which accounts for nearly 
half of the variance in the data cube of scene 1 
and is dominated by DOLP and ORT.   

 

 
Figure 5b. Second derived image which accounts for nearly 

40% of the variance in the data cube of scene 1 
and is dominated by S0. 
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Figure 5c. Third derived image which accounts for approx. 
14% of the variance in the data cube of scene 1. 
The magnitudes of the eigenvector components 
are more evenly distributed. 

Figures 6a-c are cluster plots that exemplify the progression of the clustering output.  The color 
bar corresponds to the cluster number.  Figure 6a shows the scene classified into 19 clusters.  
The background is comprised of clusters 1 through 3 while the features of the vehicle are 
classified between clusters 4 through 19.  Clusters 16 through 19 represent the front of the 
vehicle, while the rest of the vehicle is generated via clusters 4 through 15.  In figure 6b, the 
scene is split into 11 clusters.  Most of the original background has now been fused into one 
cluster.  Also fused into this “background” cluster are some pixels that correspond to the vehicle, 
mainly its wheels.  Other clusters that represented portions of the vehicle in the previous 
calculation have been fused together as well.  In figure 6c, the scene is now split into only two 
clusters.  All of the background has become one homogeneous cluster.  Also included in this 
cluster are portions of the vehicle which mainly include the front and wheels.  Therefore, the two 
distinct clusters that remain are the background and the side of the vehicle. 
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Figure 6a. Cluster analysis plot for 19 clusters. The background 
is comprised of clusters 1 through 3 while the features 
of the vehicle are classified between clusters 4 through 19.  

 

 

Figure 6b. Cluster analysis plot for 11 clusters. Clusters 1 
through 3 are predominantly the background 
but do consist of some portions of the vehicle. 
Clusters 4 through 11 correspond to the vehicle. 
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Figure 6c. Cluster plot for 2 clusters.  Cluster 1 is predominantly 
the background but does contain some of the 
vehicle.  Cluster 2 consists mainly of the side  
of the vehicle. 

Scene 2 

The second scene, shown in figure 7, is of a mobile rocket launcher located in the brush.  The 
DOLP image is shown in figure 8.  Notice that the geometry of this vehicle is very different from 
the vehicle in scene 1 (figure 3). 

 

 

Figure 7. Visible image of scene 2 which is a mobile 
rocket launcher in the brush. 
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Figure 8. LWIR DOLP 30x30 pixel image of mobile rocket 
launcher in scene 2. 

The percent variance and cumulative percent variance for the three principal components is 
shown in table 3.  Of the three principal components, the first accounts for the largest amount of 
the variance, approximately 44%.  The last two principal components account for 33% and 23% 
of the variance, respectively.  The 3 components of the eigenvectors are listed in table 4.  The 
variables that contribute most to the first principal component are DOLP and S0 images and 
DOLP and ORT are inversely correlated to S0.  As opposed to scene 1, S0 is important in scene 2 
because the shadowed (i.e., cool) regions are very prominent.  The second principal component 
is dominated by ORT and DOLP is now inversely correlated to ORT and S0. The contribution to 
the third principal component is dominated by DOLP and S0, respectively, and all of the 
variables are directly correlated.  

Table 3.  Percent variance and cumulative percent variance for the principal components.  

Principal Component Percent Variance Cum. Percent Variance 
1 44 44 
2 33 77 
3 23 100 

 

Table 4. Components of the eigenvectors Vi (i=1,2,3) which serve 
as basis vectors for the projection of the data in the 
multivariate space of scene 2.  

 V1 V2 V3 
DOLP -0.69008 0.20562 0.69391 
ORT -0.16492 -0.97824 0.12586 

S0 0.70469 -0.02758 0.70898 
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Figures 9a-c are the 1st, 2nd, and 3rd derived images for the scene shown in figure 8. The dark and 
light pixels are negatively and positively correlated, respectively, to the first principal component 
shown in figure 9a.  Recall that the first principal component is dominated by DOLP and S0, 
whose eigenvector component magnitudes are 0.69008 and 0.70469, respectively (see table 4).  
It is apparent that the dark pixels in figure 9a correspond to the rocket, while the light pixels 
correspond to the side of the vehicle transporting the rocket.  In figure 9b, the pixels that are 
positively correlated to the second principal component, which is dominated by ORT (see table 
4), seem to correspond to the side of the vehicle as well as the rocket mount.  Note that in the 
portion of figure 9b that corresponds to the vehicle, a portion of the back of the vehicle is 
inversely correlated to the second principal component, while the side of the vehicle is positively 
correlated.  This is consistent with the fact that the second principal component is dominated by 
ORT.  However, figure 9c shows that the pixels corresponding to the rocket are positively 
correlated to the third principal component (which, as seen in table 4, is dominated by DOLP and 
S0). 

 

 

Figure 9a. First derived image which accounts for 44% 
of the variance of the data cube of scene 2 and 
is dominated by DOLP and S0. 
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Figure 9b. Second derived image which accounts for 33% 
of the variance of the data cube in scene 2 and 
is dominated by ORT. 

 

 

Figure 9c. Third derived image which accounts for 23% 
of the variance of the data cube in scene 2 and 
is dominated by DOLP and S0. 

Figures 10a-d are the cluster plots for scene 2.  Figure 10a shows the scene classified into 15 
clusters.  Clusters 1 through 7 corresponds to the background while 8 through 15 to the mobile 
rocket launcher.  In figure 10b, many of clusters have been combined so that there are only five 
clusters.  The first two clusters correspond to the background, while the rest correspond to the 
mobile rocket launcher.  
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Specifically, cluster 3 is the side of the vehicle and the rocket mount, and cluster 4 the rocket, 
and cluster 5 is a solitary pixel that corresponds to the side of the vehicle.  Figure 10c shows that 
the number of clusters have been reduced further, to three.  Here the background is represented 
homogeneously by cluster 1, the rocket by cluster 2, and the side of the vehicle and rocket mount 
by cluster 3.  Finally, shown in figure 10d one can see that the rocket has been combined with 
the background so that the only remaining clusters are the background and the side of the vehicle 
along with the rocket mount.  

 

 

Figure 10a. Cluster plot for 15 clusters. Clusters 1 through 
7 corresponds to the background while 8 
through 15 to the mobile rocket launcher. 

 

 
Figure 10b. Cluster plot for 5 clusters. Clusters 1 and 2 

correspond to the background and 3 through 
5 correspond to the mobile rocket launcher. 
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Figure 10c. Cluster plot for 3 clusters. Cluster 1 corresponds 

to the background and clusters 2 and 3 
correspond to the mobile rocket launcher. 

 

 

Figure 10d. Cluster plot for 2 clusters. Cluster 1 corresponds 
to the background and rocket and cluster 2 to 
the vehicle and mount of the rocket launcher. 

Discussion 

The utility for applying PCA to multivariate polarimetric images is demonstrated by processing 
subsections of two polarimetric images that each contains an object of interest.  The original 
DOLP image regions seen in figures 4 and 8 were intentionally chosen to test how effective the 
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PCA methodology is for enhancing original imagery when applied to a simple three channel 
polarimetric image cube.  As seen in the resultant first component images (or “derived” image) 
shown in 5a and 9a, information concerning all of the variables used in the analysis has been 
incorporated into an image that maintains the same level of contrast and target features as the 
original DOLP images.  Thus, the PCA methodology provides a more efficient means for 
analyzing the relationships of the variables in the data set.  

We have used the fact that principle components contain the information of the data set in 
descending order to isolate the useful information for further analysis.  In general, the first 
component images have the least amount of “noise” because they contain small contributions of 
the channels with the smallest amount of contrast.  The later components get noisier since they 
contain less of the total sum of the squares when compared to the first component image, i.e., 
they contain more of the channels with the smallest amount of contrast.  As mentioned earlier, 
the first score images seen in either figures 5a or 9a represents a weighted average of the most 
intense raw image of the polarimetric image cube (sometimes termed a “stack”).  These images 
can be considered as a noise-reduced “mean” image.  In many other applications, the first 
component score image plays an analogous role as a noise-reduced mean.  The score images seen 
in figures 5 and 9 shows additional detail of the sample and may be of use depending on the 
application.  

Because the principal components are orthogonal, the corresponding score images show optimal 
visual contrast between two consecutive scores, i.e., most noticeable between the first and 
second score images.  The net effect of this is to enhance target features not visible in any single 
image of the original multivariate image set.  This additional information may be useful in 
identifying objects not readily distinguishable from complex backgrounds.  

In addition, we also apply cluster analysis that takes into account the similarity (or dissimilarity) 
of all the variables for each data point to provide a representation of the objects within a scene.  
When the number of clusters that a scene is split into is large, the algorithm attempts to 
distinguish between different features of the same object, i.e., one object may be split into more 
than one cluster.  A limitation of the technique is that the ability of the algorithm to provide 
information about the features of a particular object depends upon the size of the object within 
the field-of-view of the camera.  If the object is large within the field of view, then the clusters 
may reveal information about the geometrical shape and orientation of the object.  If the object is 
small within the field of view, the algorithm will most likely have trouble accurately representing 
the different features of the object.  A detailed study of the mean polarimetric values for each 
cluster will have to be performed to understand its ability to represent various features of objects.  
Another limitation of this technique is that it is computationally extensive.  The array sizes 
involved can become very large, thus slowing the run-time of the algorithm.  To improve upon 
the technique, it is recommended that the multivariate image analysis be made more efficient to 
improve the run-time for large subsections of polarimetric images.  In addition, this algorithm 
should be combined with another algorithm that quickly identifies locations, or subsections, 
within the entire image that the multivariate image analysis can then be applied to. 
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